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SUMMARY

A procedurs 1s prssented for obtaining the pressure distri-
bution in a two-dimensional, incompressible, and nonviscous flow
on an arbitrary airfoll section In cascade. The method considers
directly the influence on a glven ailrfoll of the rest of the
cascade and evaluates thls interfersnce by an iterative process,
which appeared to converge rapidly in the cases tried (about unit
solidity, stagger angles of 0° and 45°). Two variations of ths
basic interference calculations are described. One, which is
sccurate enough for most purposes, involves the substitutlion of
sources, sinks, and vortices for the interfering airfolls; the
other, which may be desirable for the final approximation,
involves a contour integration. The cowmputations are simplified
by the use of a chart presented by Betz In a related paper. The
numerical labor involved, while considerable, is less than that
required by the present methods of conformal transformation.
Illustrative examples are included.

INTRODUCTION

The rapid increase of interest in the deglign of fens end
turbines has led to many sbudies of the two-dimensional flow past
infinite lattices. Most of these studiss Involve approximate
procedures (for example, references 1 to 3) or present solutions
for special clasmes of shapes (references I and 5). Recently, .
attempts have been made to obtain exact solutions by conformal
transformation of the lattice to & circle. To this end, Howell
(reference 6) used a procedure that First transformed the lattice
to an isolated S-shape figure, which could then be transformed to
a near circle by successive Joukowski transformations and finally
to a circle by the method of reference 7. In reference 8 the
cascade was transformed flrst to & near circle and then to a circls,
also with the use of several stages of conformel mapping. In
reference 9 the lattice was mapped into a lattice of straight
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parallel lines by meens of a functlion that was determined with the
aid of the transformation of this line lattice to a circle. (See
references 10 and 11.) These transformations are of conslderable
interest, theoretically. The methods of references 6 and 8 require
lengthy computations, however, and difflculty hasm been experlenced
in obtaining accurate mmericel results with the method of
reference 9. All three methods require modifications for highly
cambered contours or for lattices of high stagger and solidity.

The method presented herein does not seek & conformal
transformation directly bub, like the older spproximate methods,

- Begks to evaluate the interference at each alrfoll due to the
presence of all the other alrfolls of the cascade. Tho velocity
distribution on each airfoil is consldered to be the sum of thatb
corresponding to its presence in the vniform free-stream flow plus
that corresponding to ite presence in the interference flow. The
Interfersnce 1s calculated from the velocity distribution on the
alrfoils so that the method reduces to an iteration process in which,
for the first approximation, the interference is computed by assuming

. the .fres-stream veloclty distribution to exist on each airfoil, and
in subsequent approximations thls velocity is corrected according to
the interference derived in the preceding approximation. A solutlon
ig thus found for an erbitrarily specified angle of attack, and this
solution is ussd to find the conformal transformatilon to the circle
end thence the solutlon for eny other angle of attack.

The present method has been found sppreclably less laborious
than the methods thet seek the conformal transformation directly
and is also considered more flexible In that it may be adapted to
a variety of cascade problems that would be diffilcult to solve by
formal transformation methods; for example, the problem of the flow
abogt doublﬁ cascades (or superimposed lattices) or certain types
of "inverse problems involving the determination of the setting or
solldity for a given alrfoll in cascade. Some of the featureas of the
Interference .and iteration methods used should also be useful in the
solution of flows involving a finite number of interfering bodles.

SYIMBOLS

W Plow function (complex potentisl)

o

velocity potential

ﬁ' stream function
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e RS

veloclty at infinilky

circulation

mapping-function paremeter

local wvelocity

vortex strength

source strength

complex varieble of physicel plane (x + 1y)
fixed point In physical plans

camplex variable of reference plane (& + in)
profile chord '

profile chord used in trensformation of refersnce T

cascade spacing (dietance between'corresponding pointa on
adjacent blades; see fig. 1)

central engle of perfect clrcle cbtalnad in transformation
of reference T

central angle of unit circis of figure 1
surface length on profile

blade angle {angle between stagger line and normal to
chords; see fig. 1)

solidity (ratio of chord to distance betwsen profiles)
angle between flow direction and normal to stagger line
angle of atback relative to blade chord

angle of zero 1ift for cascade, rolative to blede chord

static pressure rise

turning angle of flow
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o) denslty of flunid

én,bn Fourier series coefficlents

Subscripts:

iy free stream

a disturbance ' '
¢ compensating

T due to circulation change

a additionsl

T total

t tail gtagnetion peint

n nose stagnation'point

T.B, trailing edge

B due to source rows

v dvue to vortex rows

z physical plane —
¢ reference plane

¢ mean flow

1 incoming flow

2 outgoing flow

Ao at flow directlon XO

Aot at flow direction My'

THEORY OF INTERFERENCE CALCULATTIONS

In order to explain better the basic concepts and procedurss of
the Interference calculations, discussion of the iterstion steps will
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be postponed for the present, and the interference calculations will
be described as if they were belng used to verify a known solution.

Breakdown of the flow function into four cmongn%s.- Attention
is fixed on one airfolil of the infinite cascade which will be

designated the central airfoll. The flow function on the boundery
of this airfoll is considered to be the sum of the following componsents:

We the flow function for the central airfoil, considered as isolated
in the free-stream flow (the vector average of the flow far
in front of the cascade and the flbow fer behind the cascads).
Inssmuch as the boundary is a bstresmline in thls flow,
We = Op.

Wa the disturbance along the contour caused by the presence of
all the other alrfolls of the cascade, designated the

external airfolls (Wd. =04 + iwad_)

W the compensating flow function (which may have singularities
only within the central airfoil) that 1s required to
maintain the alrfoll a streamline in the presence of the
disturbance flow. It is determined by the condition that,
on the boundary, lis stream functlion must be equal and
opposite to the disturbance stream functlion. Thus,

We = & + 1Y, where ¥, = Y-

Wp the contribution of the cirgu.',l.ation' that must be added to
maintein the. trailing-edge condition; it has only a real
component ‘(WI' = <D1-.).

The sum Wy + Wy + Wp represeénts the met change of flow

function due to the presence of the external airfolls; it will be
deslgnated the additionel flow function Wg = 05- The sum Wy + Wy

will be designated the totel flow function Wp = Oepe

The evaluation of the isolated, or free-sireem, flow @¢p is

readlly performed by the method of reference 7 and reguires no
further discussion in the present paper. The dlsturbance flow can
be calculated when the potential distribution (or velocity
distribution) on the external airfoils is known. Finally, the
compensating flow and the circulatlon flow are readily determined,
as will be shown, when the disturbance flow is known. In the
followlng sectlons two methods of calculating the disturbance flow
will be descrlbed: +the approximate source-vortex method and the
exact contour-integral method.
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Disturbance flow by aspproximste source-vortex method.- Fach
of the external airfoils is considered %o be,adeguately represented

by an grrangement of &dbout two sources, three sinks (or negative
gources), end five: vortices aiatributed along its mean line. The
strongths and locations of these singularities-are;.chosen on the
‘basis of the: cherdwise. thickness dlstributioi Bnd chordwise '
velocity -distribution. “The choice 18 somew\hat arbitrary and may
be left to.the. Judgemen'{‘. of the worker; howaver, & detailed method
of choice. has been déicribed in the section ‘entitled "Computat:lona.l
Methods." The disturbance flow, then, is.ihat.of gbout ten
infinite rows of . eingularities, equally spaccd. along the casgcade
direction except that none are located where the central airfoil is
to be placed. The fiéXd of each vortex vow is shown in figure 2
vhere, for. converlence, “the vortices are assumed fo:be:iof mih
strength, spaced at unit distance along the y-axis. This figure is
from raference 1 and the equation for the flow iys (raference 2)

- iy ~‘ LR e

- i
Tl Laad

R T Y
= e B TR B A

R Y = 2“ :I.o.ge sinh nz + mloge e

In order to find the contribu'bion to t.he d,i stnrba.nce flow
caused by & row of vortieés at, say, 0.3 qhora on the “external air-
foils, the. cantra.l -airfoil,. Grawn to scalo and properly oriented
relative to. the Gascade direction, is placed. at t‘he center of
Tigure 2, with the origin at 0. 3 <hord on "the massn line, The valves
of veloc'ity potential. and stredw function Fead Rt selsched points
slong ‘the airfoil contour, ‘multiplied by the Essuméd vortex strength,
give directly the contribution of this vortex rov. %o (I)d. and Trg.-

By shifting the Uentral airfoil so ’bhat the origin is located, in
turn, at ssch of the. other essumed vortex positions along the mean
line and repeating the foregoing process, the contributions of all
the vortices in the external airfolls are obteined at the same
points. .. The sum-of thess valugs at a given point .on_the. central
airfoll represents -the ‘contribution of. the vortex singularities 1n
the lattice to -the distuirbance function Wd gt tha:l: point The

contributions of . the gources can be Tound in the’ same way except
that the lines merked ¢ are considered as -® and the lines marked
¢ are congidored. es % + Blnks are considered a8 negativa sources .

Qontog; -integral method I‘or eva.luati_gg clisturbance flow .
function, - In the proceding seotion) the ‘distirbencs . field waa

calculated a,p];roximate;y by -repreaenting ‘e&th airfoil by ‘e scmewhat
arbitrary a.rra.ngement of vorticed, sources, and sinks distributed
on the meen 1iné, An .airfoil may be represented exectly 'by a
continuous disfribution of vortices slong its contour, the linear
denslity of wh:l.ch a‘b overy point equals the velocity on the airfoil
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at that point (reference 12). The field at a point on the cemtral
airfoil due to & row of corresponding surface elements of the
external airfoils (that is, & row of vortices of strength vp ds)

may be obtained directly from figure 2. Integration of this
contribution along the contours of the external ailrfolls provides
an exact determination of the disturbance field. The procedure is
an obvious modification of the preceding approximate method.

Iet ¢ ard ¥ (without subscripts) denote, respectively, the
potential and stream function.of the row of unilt vortices in
figure 2. In ovder to determine the disturbance potential and
stresm function at a point z' on the central airfoil, the alr-
foll contour, drewn to scele and correctly oriented relative to
the cascade direction, 1s superimposed on figure 2 so that the
origin falls, in turn, at a mumber of points 2z on the contour,
and for each setting values of ¢ and ¥ are read at the
point =z'. Then the disturbance flow function at z' is given by

7
¢d(z') =/c¢ 'V'T(Z) ds

Falz") -:-/\E vp(z) ds
c

where

vT(z) . local velocity on bhe, airfoil a£ variabi;;poinx z

8 distance along airfoil contour :

¢, ¥ values read at z' when origin of figure 2 is at =z

and the integration is performed along the alrfoll contour.
Since vp(z) ds = d@T( § the foregoing equations can be

rewritten as . LN e
®a(z") =;/;¢.EQT(Z5
?d(Z') _d/ ¥ me(z)

so that the disturbance potential and stre&m function at point z'
are readily evaluated by vlotting: ¢ and :¥ -egainst &p and
measuring the aree under the curves.
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Determination of compensating flow and circulation flow.- As
has been indicated, the compensating flow function may have
singularities only within the central airfoil contour, and on the
contour, the stream function must be exactly squal and opposite to
the disturbance streem function. From the known transformstion
of the isoclated airfoil to the circls, which was found in the
process of determining Wp, the correspondence betwevn pointe on
the airfoil and points on thes circle is known. If, then, the
dosired. compensating stream function is expanded as a Fouriler series
in terms of the circle angle @, _

w .
g[:c=z__: (ancosncp+bnsinn<p)

1ts corresponding velocity potential will be (referenca T7) the
conJugate series

[o2)

%, = n/:i (-by, cos np + a, sin o) _

The determination of ®, from ¥, is readily accomplished by thé
method of roference 13, : .

™

In order to maintain the trailing-edge condition, a vortex I‘a
must be added at the center of the clrcle of such strength that
I'y/2x equals the value of -a¥ /d(p at the trailing edge (determined

graphically from a faired plot of Qc against ©). The corre-
sponding contribution to the potential jis

@1'\ =

The velocity potential &, =045 +& . + &p that constitutes

the net offect of pubting the airfoil in the cascade (tha‘c is, the
net interference effect) may now be determined by simple addition
of the three components. Presumably , Bince the calculations were
made c;;rith the correct @, @, should be the difference betwsen &p
and .

In the final step, &, 1s differentiated with respect to
distence along the asirfoil to get the corresponding interference
effect on the velocity v, which should 'be_s the difference between
Ve and. vqp., Convenient procedures for performing these calculations
ere discussed in the section entitled "Computational Methods."
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ITERATION METHOD

In the preceding sections the basic concepts and procedurses
of cascade interference calculations have been outlined. In the
present section, the application of such calculations In the pro-
posged iteration method of solving cascads flow will be discussed.

As flrst atiempted, the method was essentially as follows:
In the first step, Py is assumed to equal Qp end a first

approximaetion to @a is calcula.ted on this basis by the methods
Just described. In the second step, @T is assumed equal to the

sum of Py and this first aprroximation to 2., end a second
approximation to Q is COmputed The succeeding steps follow
the same pattern a.nd. are continued until two succeasive Q -

distributions are essentially the seme. The source-vortax nethod
wvas used for the earlier approximations, but the final approximation,
when convergence is practically complete, was made by the contour- -
Integral method. This procedurs, however wes found to converge
relatively slowly in some cases; and the general practicability of
the interference method depends on a slight modification of the
source -vortex method.

The modiflcation depends upon the observations that the
contribution of the sources and sinks to. (I)a. changes by relatlvely

little from one approximat'ion to the next and that the contribution
of the vortices to &, is nearly proportional to their total

gtrength and relatively independent of their distribution. Obviously,
If 1t weore exasctly true that the contribution of the sources and

sinks is constent and that the contribution of the vortices is
proportional to their total strength, only one interference calculation
would be required and the solution could then be obtained through a
simple algebralc eguation. Thus,let .

Tp total circulation on airfoil in cascade

T P total circ‘ulation.on isolated airfoil at same angle of attack .
T a additional circula.-tion (I‘T —I‘f)

T fg cbnstant contribﬁtion of sources and sinks to Ty

I‘a contribution of vortices to I‘ when I‘f is assumed on all

v externsal airfoils
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Then, by the preceding assumptions,

. T
Ip - Pp + T +.'ITE“P8~V

whence

(1)

Since the assumptions ars not exactly true, the value of PI

so calculated is correspondingly inexasct; however, it is ‘much
closer to the true valus than if it were taken simply as
Ip + I‘as + Ty, Correspondingly, the potential

Op = O + B + Iog

By 1s much more accurate than the sum
f :

ébf +<bas + @av.

The second approximation is similarly adjusted. Thus,
corresponding to_ the QT-distribution Just obbained, a new set of

sources, sinke, and vortices are distributed along the mean line,
and new values of Igs apd. Pav gre calculated. Adjustment -

follows, as befors, from the equatlon

T
T - +T Top
T2 .f + ag +.PT' av.
1

vhere the subscripts 1 and 2 refer o the first and second
approximations, respectively, Solution for PTE gives

I1f + Pa. .
PT = £ o
2 i .I‘av .
T'p (2)
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and, finally, the potential is given by
TN To
Op =8, t @ +t—=8
Tp r 8y

This simple modification of the procedure is so sffective
that In the cases tried, the first step gave solutions that would
be satisfactory for meny purposes and the procedure had practicelly
converyed at the second step. The additionel complication of
keeping the source-sink and the vortex effscts ssparate so that

I, end Pa'v can be separately computed is relatively minor and

8
emply repald by the rapidity of convergence.

After the source-vortex method has essentially converged, a
final epproximation by the contour-integral method is desirabls,
In the cases compubed, however, this final step was found to
introduce only minor changes in the result.

THE FLOW AT OTHER ANGLES OF ATTACK

From & known veloclty distribution at a given angle of attack,
the angle of zero 1ift and the slope of the 1lift curve, together
with the velocity distribution at any other angls of a'b'back may be
obtainsd, For this purpose, the lattice is conveniently consid.ered.
to be related conformally to an isolated circle by a periodic
transformation, which might be, say, of the type used In reference 6
8, or 9. The e@licit form of the trensformation, however, is not
need.ed for the pressnt purpose.

The flow function in the circle () plene that corresponds
to the desired flow in the physical (z) pleame is .

_ Vod.{ 1).0 §+eK 17«.0 §+e"K‘ §2 oK
W_-—Et-\e § eK loge - L—L— gega __

(3)
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In the {-plane this flow may be interpreted as that due to the -
gsystem of sources, sinks, and vortices shoyn in figure 1. The

unlt circle €= e16 is & streamline of the flow and thse circu-
lation about any contour enclosing this circle but not enclosing

the points ¢ = te¥ 18 T' (positive clockwise).
In the physical (z) plane, the complex velocities at the

points z = dnd 2z ¥ - are. determined by equation (3) and
the transformat*on. Thus, :

A SN L N LR
(a) ot Tt TR

=We

JV

-i '—1 '

and

where the angles and velocities aro defined in figure 1. The
flow far from the lattice is seen to be the sage as that of en

infinite vortex row in the uniform flow —Vbe . It should be
notsd (fig. 1) that Ay =ag+ B, M =ay + B8, and Xk, =a, + B,

In the followﬂng peragraphs it will be shown how to obtain from .
. the gilven splution in cescade the perametér K . and thé stagnation
‘points 6 - and Bt for the corresponding flow about: the. circle.

These values flx the angle of zero 1if+ and the slope of the 1ifh
curve of the airfoll in cascade; together with the known potential
distribution they determine the conformal correspondence betwéen
the profile and the circle ani, hence,the velocity distribution
at any angle of attack. - _ , .. _

Since the airfoll contour (z-plane).ie conformally related o
the unit circle ({-plane), it follows that at any given angle of
attack &0, the chesngs of_ﬂelocity potentlal from noee:to{tail

stagnation polnt on both uppor and lower surfaces must be the same
for the circle and for the profile in cascade. These potential
changes can readily be obtained for the single solution on the
lattice from the final Q ~-distribution, The velocity potential

on the unit circle ia obtained from equetion (3). Thus,
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=1
?ﬁ__ = -2 lcos Ay log, [SOSR K * 008 O} 4 5 gip Mg ten 2129
c¥y 2ro cosh K - cos @ sinkh K

—

L I ta,n—ltan__e.. I
|

v.4 tanh K

A (1)

and the change of potential from nose stagnation point &, to tail

n
stagnation point 6 " is
AD ;r . u
£ - _1_/\, cos hg log, {cosh X - cos 84)(cosh K + cos 6p)
¥, 2n0 | (cosh K + cos 6:) (cosh K - cos 6y)

-1 | (sin 6, - sin 6y) slnh K

+ 2 gin A, tan
0 -
__sinhEK + gin Gn sin Gt

_E. '[;an—l
Vod.

(tan 0, - ten 0) tanh K ’L
tenh?K + tan 6, tan 8y J (%)

This potentiel change may be obtalned for either the upper or the
lower surface. Two valuss are cobtained depending on the cholce of
quadrant for the third term of equation (5). The condition of zero
veloclty at nose and tail stagnation points is

I -
sinecosxo-cpse’canhl{sinho-gvodsinhK—O (6)

By use of the lmown values of I', Adp, and X,, equations (5)
and (6) can.be solved simultanecusly for 8,, 6y, and K.

Equation (6) cen be considered as & guasdretic in sin 6 and with
an assumed valus of K  dstermlines corrseponding values of 6y

and 6i. FEquetion (5) then determines A ¢ By the proper choice
of values of K, a curve of A®, egalnst K may be plotted such

thet at & point on this curve A¥¢ = ADp. The valus of K at this

"point is the desired value; the corresponding values of 6, and 6,



are then given by equation (6). A convenlent initisl choice for K 1s the value that
corresnonds to a lattice of etralight lihes of theo samn stagger and of about 10 percent or
20 percemt higher solidlty. Figure 3 is of aid in this respect. The computed valuss
of K and 8y, together with equation (6), determine the angle of zero 1ift ([ = 9]

with respect to the airfoil chord, thus, i

-1 tan o
1 = ten —-—% (T)

and the slope of the 1ift curve, besed. on mesn velocity, is obtained by differentiating
equa.t:lon {6) with respect to Ao; thus,

) \fetm%e, + etm’x -
o

1
slnh K cosh K (8)

F|5

A corvespondence between points on the alrfoil emd points on the wunit circle may
be obtained by comparing the velues of &, computed by equation (4) with the velues

of ¥p from the known potential distribution. The points (x,y) on the profile
end 6 on the circle for which @ =Qp are corresponding points. The velocity on the
lattice pro:filu for the stream a.ngle 7«.0 ie

V0

VO/ d

cod M, cosh K (ein & - sin et) - 8in A, sinh K(cos 8 - cos 8:)

= d"—z T[ ! -
I - . cosh®K - 30329 : —

vhere the term In bracksts, which rspresents the velocity on the.circle boundary, :ls )
obtained by d*ffﬂrentiating squation (4). It follows that the velocity corresponding

to & new streem smgle '.\.O is

7T

ZG2T *ON NI VOVN




v WA cos hy' cosh K(sin 6 - sin 91:) - 8in hy' sinh K(cos & - cos 6y)
- o/ cos }O coeh E(sin 8 - sin Bt) ~ sin My sinh E{cos @ - cos Bt) (9)
"0

The follow'ng relationn, which demcribe the flow far away fram the lattice, ere of interest.
The streem angles A, and X, &t 2 = apd z = - &re '

. o
- agin xo + VE
A = tan 0
1 cosko
and
H
]Sinkoﬁgvo—d
A= tan™
2 cog xo

end the engle through which the fluwld is turned by thr. latiice 1s given by

,_11, cos lo
-1 \TQﬁ_
o = tan

2
- (e

The rise in static pressure acrcas the lattice i1s
AoV 2 \V v
o 0

= coseko (secle - Bgcgke)-

252T "ON NI VOVN

ot




16 RACA TN No. 1252

REMARKS ON CONTOUR MODIFICATIONS CORRESPONDING TO LOCAL

PRESSUPE CHANGES

In refersnce 1k, the modification of an airfoil contour to
obtain, approximately, desired small changes in the presaure
distribution is dlscussed. The method, based on the formulas of
reference 7, a@valuates a slight modification of the conformal
transformation of the circles to the airfoll, euch that the
stretching factor at every point is changed in proportion to the
desired relative change in local wvelocity.

d

Althcugh 1n reference 14 +the airfoil was assumsed to lie in
a straight uniform field, the treetment is_equally applicable when
the airfoll is In & curved or distorted flow fleld. Accordingly,
the procedure should bs applicable to airfolls in cascade,
provided the same modification of the axtornel sirfoils leaves
the dlsturbance flow field essentially unaffectsd. This condition
mey not always be satisfied: however, in such cases the method
could possibly be improved by a procedurs analogous to that
described 1n the section of the present paper entitled "Iteration
Mcthod." -

COMPUTATTIONAL METHODS

The basic theory has been presented. In the following sectioms
some of the methods used for performing the actual computations will
be discussed.

Selection of. pointe for evaluation of disturbance flow.- The
determination of the compensating flow by the method of rsfercnce 13
requires that the disturbance flow be evaluated at points <that, by
the conformal transformation, correspond to pointes equaelly spaced
about the clrcle. These pointe, which are located by reference to
the conformal transformation, are preferably chosen so that one is
at the trailing edge. Experience has shawn that, for the
proliminary approximetions, 12 points at 30 intervals yield
acceptabls results. In the final step by tho contour-integral method,
the use of 24 points is preferable in order to improve accuracy,
egpeclally nesr the nose. An acceptable campromise is to evaluate
@d and ?d. directly for only the additional points that are near

the leading edge and to pick off the v&lues at the other additional
points from a falresd curve.
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. Inasmuch as values for the 12-point and 24 -point methods are
not included in reference 13 thu following table is presented:

1«.— Cy B

n=6 n =12

_ 1 {0.62201 0.63298
' 3] .16667 .20118
51 .0kh66 .10860

T -=---- . .06394

9| —eemmm 03452

11 | <i-a- .01097

Evaluation of @, apd v,.- Integration of equation (36) of

/ . .
reference T along the circls boundary yields the values of the
potential fbf at points on the airfoil as follows:

» C % Yo g |

5 geo ° L? sin{g + 8) - cos(a +.@)) - . - (10)
o .
- vhere
a angle of attack
B angle of attack for Zero 1ift
aevo radius of the circle to which the airfoil transforms
o P angular position along the circle, as determined ‘by the

trensf omati on

If the transformation hes beoh performed as recommended in
reference 7, the constant (&) will be slightly less than one fourth
the chord. Although the potertial discontinulty (corresponding to
the circulation) may , Without loss of generality, be pla.ced. at any
roint on the contdéur, the trailing edge will generally be found to
be the most convenient location

S et
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The additional velocity Va is gjven by ‘the deriVauive along

the'surfaée'ﬂ%gag it may be determined by graph*cally differen-
tiating @& with respect to the circle angle ¢ and multiplying

this slove by %2- Thusg,
8.

vy 42 ) 4@, do

Vo ‘V-'OG.S Vodq) ds - (ll)

The value of gg- mey be obtained from equatlons (37) and (38) of

reference 7. Thus,

(l . d"j gjo e (12)
\/1+ g“finh +sinJ L '

de

L+ 3 K

B

or

ée _

* —Ea. \/[} +(%§Zﬂ Einheﬂz .+ | I;s.inée]

where the symbols €, 6, eand 'y are defined inh reference 7.

The cascade solidity need bs taken into account only when the
airfoil sketch to he used with figure 2 is constriicted. For the
subsequent celculations, any convenient -airfoll.chord may be used,
trrovided only. that the sams chord is used Lfor the external airfoils
end for the central airfpil. The reagou 1s as follows: The '
strengths of the singularitios used ta represent the éxternal
airfolls are proporitional to the asaumed airfoil chord; hence the-
additional potentisls induced on the central airfoil will be
proportional to the assumed chord, Silnce both the additional
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" potential @a ani the distance s &Tong the contour gge pro-
portional to the chord, the alditional velocTty v, = ?E?' will
be independent of the chord. :

The chord may then convenilently be chosen as that correspondirg
to a value & =1 since & would thennotappear in equations (10)
and (12). :

The net velocity at a.point on the airfoil surface is the
algebraic sum of ths velocity on the isclated airfoil and the
induced velocity v, at that point.

Selection of vortices for sovrce-voritex method.- For cascades
of about unit solidlty, the vortex distrivution for en airfoil of
conventional design may be represented by five vortices spaced on
the msan line at 0.1, 0.3, 0.5, 0.7, and 0.9 of the chord. The
strengths of the vort¢ces £ra detenminod by the known chordwise
distribution of potential @p on the pper and lower surfaces for

the given approximation. The difference in potential between the
uppsr and lower surfaces at 0.2 chord is thus anproximutely the
total vorticity between the leading edge and 0.2 chord and is
consldsred to be concentrated in the vortex at 0.1 chord; similarly,
the increase in this potentisl differencs betwssn 0.2 chord and

0.k chord yields the strength of the vortex at 0.3 chord and B8O on,

The total vortex strength must satisfy the equation -i; = 1;.

Selection of sources and sirks for source-vortex msthod.- The
selection of sources and sinks to represent the thickness distribu-
tion of ailrfoils is lsss readily systematized than is th= selsction
of vortices to repressnt the 1ift distribution. For conventional
airfolils, e ressonably satisfactory representation is gsherally
atteinable with a source at sbout 0.025 chord, & second source
midway between ths nose and the position of maxwmum thickness, and
sinks at 0.5, 0.7, and 0.9 of the choird. Tha strength of each
source or sink is taken as the difference betwsen the "intermal Plow"
at e station midwey batwsen it ard the preceding source, snd the
internal flow at a station midwey betwesn it and the following
source. This internal flow at a given station is estimated to be
the product of the thickness and the averages of the uppsr and lower
surface velocities &t that station.
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Obviously, rot all airfoil shapes will be best treated
according to the pattern just described; however, litile ingenulty
is required to adjust the treatment to & parti cular shepe. In eny
case, the total source strength muset equal the total sink strength.

PROCEDURE

A suggested step-by-step procedure is as follows:

(1) Obtailn the velocities on the airfail at the glven angle
of attack in & uniform stream by the msthod of reference.T. This
stop also determines a conformal corrsspondsnce between points
(x, ¥} on the alrfoil and engles ¢ on a circle, and hence the
potential &istribution §p by equation (10).

(2) Using the procedure described in the section entitled
"Computational Methods" choose sources, sinks, and vortices to
represent the airfoil.

(3) Choose points around the airfoil at which the distur-
bance function Wy is to be found; these points arc conveniently

chossn, by reference to the conformel transformation, to correspond
to 12 equal intervals about tiae circle. By use of Tigure 2,
doteimine =t these points the contributions to § a and. ﬁfd. of

each source and vortex row. Sum sepearately the valuss due to
sources and vortices at sach point.

(4} TForm the ccmpensating functions ¥, = ¥y both for

vortices and sources and determine the conjugate functions by the

method of reference 13. Ploth Qc against ¢ and measure tpe\

slope at the tralling-edge point. The relation I', = -2m d—-ﬁ}
P

determines the clrculation changes I"a and Fa,v dus to the

source and vortex rows. Obitain I" 'by means of equation (1).

(5) At each point .
(a) Sun the velues of @ and Qg duc to the
dy v

vortox rows and multiply by the ratlo .=,

(b) Sum the values of @d-s and Qp, due to the rows
of sources and sinks.

(c) Find g = T'p -Tp) E
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(6) Sum the terms (a), (t), end (¢) of step (5) to get 8,
plot éa against the circl? ansle @, and msasure the slopes at

the points used in the original conformel transformation (step (1))
at which points the stretching factor s will bs known. The
additional velocity is given by equation (11); the net velocity on
the airfoil surface is the sum. of the additional velocity snd the
velocity on the isolated esirfoil. The correeponding total
potential is Qq =0, + 83 *Qn +Qp, where Q. is known from

step (7).

Using this new potential and velocity distribution, repeat
the procedure, sterting fiom step (2). The only modificstion is
that I'yp  (step(4)) is now obtained from equation (2), and in

step (5a) the correction factor is PTE/PTJ_‘ The process is

continued until the changes in 1ift and velocity distribution
become small. For practical purposes , the results cbtained in this
manner may be entirely satisfactory. More accéurate results may be
obtained, however, by application of the contour-integral method
a8 described in the following threse gteps.

(7) Locato th: points on the airfoil that corrsspond, by the
conformel trensformetion, to points mldway betwesn thoee already
located in step (3). Place the airfoil drawing on figure 2 with
the origin, in turn, at each of the 12 points at which values. ars .
Imown fram step (6) (considersd as z-points),and read the chart
at each of the 24 points (considsred as z'-points). As previously
noted, some of these points may be neglected. For each of the 2k
(or fewer) poitits plot ths 12 values of § reoad at that point
againat the 12 corresponding values of <I)T. By plenimetry £ind

the area between the fdired curve and the ,Q)T-axis to dstermine a
The value of q;d is determined eimilarly from a plot of the 12
valuca of  against the corfesponding values of O

, dstermine its conjugate &,;

() Form the function’ qrc'z-ﬂ;}d_ s
the circulation change is T, = «21\:( -a—q—)q) e and -the potential
: : N T.E.
- ¢
QP ; Pa. Or’

(9) sSum the terms 2., 23, and @p  to get @a, plot ageinst
the circle angle ¢, and measure the slopes. The velocities on
the airfoil surface in cascade ars obtainsd as dsscribed in step (6). -

A
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Unless this velocity distribution differs widely from that dbtained
in the preceding avproximation, it should not be necessary to
repeat the procedure.

The velocity distribution at another angle of attack may be
obtained as follows:

(a) Solve equations (5) end (6) for 6,, 64, and K. A
method of molution is indicated in the discussion following
equation (65). The angle of zero lift end slope of the lift, curve
mey then be obitained from equations (7) and (8).

(b) Obtein the potential distribution P as a function
of 6 (egquation (4)); compare with the kmown &p to get a

correspondence betwsen 6 and position on the airfoll. Equation (9)
then ylelds the wvelocity distribublon at stream angls xo'.

ILLUSTRATIVE EXAMPLES

Example 1.- The velocity distribution was obtained on the

NACA bh12 airfoil in the configuration shown in figure Lk, where
B=0° o0=1.032, and 2 = 9. T7°. This exemple has been

treated in reference 8. In accordance with the foregoing procedurs,
results ag follows were obtained:

(1) In figure 5 is shown the chordwise velocity distributions
of the isolated airfoll at the angle of attack of 9.7° , 88 obtained
in & second approximation by the method of reference T._ The 1Ift
coefficient at this angle of attack is 1.67 (that is, 'c"\'rf; = 0.837),

0
the angle of zero Llift of the airfoil is ~h 2h° and the slops of
the 1if't curve is 6.95 per radian.

(2) By use of the procedure suggested in the section entitled
"Computational Methods, five vortices, two sources, and thres sinke
were chosen to represent the airfoil initially (fig. 6 and tuble I).

"(3) With the first location at the trailing edgs, 12 locations
on the airfoil wers found corresponding to 30° intervals of the
circle angle . These locations are shown in figure 6. (The
primed points correspond to 15° intervals.) Readings teken at
these points from figure 2 are given in table II. These readings,
multiplied by the appropriate source and vortex strengths, ylelded
the values of @3 and Wa due to sources and vortices given in

table III.
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() The conjugate functions @, were determined by the 12-
point method and are given in itable IV. The slopes of these
functions at the treiling-edgo point yielded circulation changes

r r
= 0.006 and -—Y = -0.538, from which (equation (1))
Ly _
¢V, N
coefficlent in cascade (c, = 1.03).

0.913. This value corresponds to & first approximate 1lift

(5) In teble IV are given the values of @, end &g, due to

I
vortex rows multiplied by the ratio —k (equation (1)), the valuss
T

of ch and @ds dus to source rows ,fand. the function

¢P=_¢T ‘Pf)§i°

(6) The additional potential &, =@z + & +&n is plotted

in figure 7. Slopes of this function wers moasured et points at
which the stretching factor is known from step (1L). The additionsl
velocity v, was then computed by eguation (10); the algebraic

sum of v, and the veloclty in isolated flow yielded the cascade

velocity (fig. 5). This velocity distribution, togother with the
total potential §m, formed the basis for a second a;plproximation

(figs. 5 and 7). Results of this approximstion are :5%3—= 0.006,
0

r
-0—31 = -0.365, and ¢y = 0.99. Ccmparison of the velocity

0 .
distribution with that of the first approximation shows that the
process has satisfactorily convergei.

(7T) The seme 12 points around the alrfoil wers chosen as
z-points; these, togother with four others at 15° intervals around
the nose (primed points in fig. 6) were used &s z!-points.

Readings from the chert (fig. 2) are given in table V. These values
were plotted against total potential @gp {arbitrarily fixed at 0
on the lower surface at the trailing edge). (A sample curve is shown
in fig. 8,) These curves were integrated by planimetry. The
results - the disturbance potentials and stream functions & a

and {3 - are given in table VI.
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(8) The function @c (teble VI) was obtained by 24-point

harmonic analysis and synthesis, with the use of interpolated
values of ¥, for the points at which it was not found explicitly.

The slope of the curve at the trailing—sdge polint ylelded
T

_%_ =.-0.3bk, from which a 1ift coefficlent ¢, = 0.99 was
[+ 0 :

obtalned.

(9) The additional potential @, = 95 + I, + QI’ is plotted

in figure 7. The veloclty distribution was obtained as befors and
is plotted in figure 5. The process appears to have essentially

converged., . _. - . . - . o ’ -

Simultancous solution of eqnatiogg¢(5) and (6) (tabls VII) to .

£1 fop O = 0.
nd the valus of K at which STy =, gave X = 0.30833,

8 = =7.57%, and 6y = 181.72°. Equations (7) end (8) then
yielded the ahgle of zero 1ift % = -5. 750 and the slope of the

de .
1ift curve 5&%_= 3.71. Thesse values may be ccmpared with
0 dac
n = -5.94° and aaé = 3.71 from refersnce 8.

In figure 9 jie shown a plot of the potential @g againgt 6

camputed by equation (4). A constant hes been added to meke the
potential equal to zero on the lower surfece at the trailling edgs.
The Imown total potential in cascads @T..and the corresponding

values of x/c .are given in table VIII. Values of 8, picked off
the plot at pointe where Qg is equal to the given values of 2,

are shown in the adjacent column. The corraspondence between
alrfoll position and the angle 6 i1s thus determined, For the .
flow angles Mg' = 1.81° and Ay' = -5.94C, the velocity

distributions were computsd by equation (9). In figure 10 these
results are comparad with the distributlone given in referencs 8.
The main results of the calculations srs summarizesd Iin teble IX.

Exsmple IT.- In an effort to obtain in the simplest possible
menner & reforence solution &t largoe blade angle concerning the
accuracy of which there could be lLititle dcubt a lattice was
derived by a modified Joukowski transformation. This trens-
formation is discussed in detall in the appsendix. The cascade
configuration is shown in figure 11 whers B = 45°, ¢ = 1.006,
and Mg = 49°. This lattice will be referred to es the "gerived

ajrfoil lattice.
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The procedure followed for the sowrcs-vortex method was similer
to that of the first example; the calculations are outlined in
figures 2 to 1k, Bscause of vhe unueval shapo of this profile,
only on3 source was used ané an additional sink was inserted at 0.3
chord (fig. 12). From & lift coefficient cy = 6.8% in isoleted

flow, a single approximatlion yielded a 1ift ccoefficient Cq = 0.54

in cascads, vhich was the sems as that derived Irom the soluiion by
conformal trensformation, ©Since the camputed changes in vorvex
distribution were emall, no further approximations wers made by
this msthod. By reference to the velocity distribution of this
approximetion (fig. 13), the process may be scen to have essuntislly
converged to the correct solution.

The final contour integration resulted in a 1ift coefficlent
¢y = 0.5% and the velocity distribution shown in figure 13. The
main resulbs of the calculations are summarized In table X.

Langley Memorlel Aesronautical Teboratory
Kational Advisory Comuittee for Aeronautics
langley Field, Va., January 1C, 1947
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APPENDIX
DERTVED AIRFOIL LATTICE

The symbols used in the appendix are defined in figure 15
and should not be confused with similar symbols used in the main
text of the paper.

Consider the trensformation (reference lO),

1 '- ek . X
zZ = 5;(9 18 logeggt eK-.+ 1P log, é’"—?‘:‘__K) (A1)

"~

The wnit circle ({-plane) becames a lattice of horizontal
straight lines in the z-plane, spaced at unit intervals along the

stagger lihe, making an angle %-- B with the axis of reals. The
solidity of thie lattice is

. 2 2 a
o= (;os B 1086'/%inh Ki;hc§§ B + cos B
g

"+

+ gin B —_—

gin B
Véinth + cosEB

This relation is plotted in figure 3.

A closed curve enclosing the points { = "_'e_'JK but not
enclosing the points f = *eK will transform by equation (A1) into
an infinite lattice of closed shapes in the z-plane, spaced in the same
menner as the straight-line lattice. Such a curve 18 the circle

£ - o
Votig 1
=08 + re
_ in
3.75

l.O'?ei¢ + 0,098
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This circle, where B = 45° and K = 0.331, becomes the lattice of
profiles that has been refsrred to as the derived sirfoil lattice.
A flow for which this circle is a streamline and which, in the
z-plans, has no singularities outside the profiles, is that due %o’
the system of sources, sinks, and vortices -shown in figure 15. The
vsloclity on the circle houndery due to this system 1s

{/f—‘ = £ 008 Ay + B sin hg + G-
\VO/'C o
where -
Al
hoo O _sim(¢-8) _ _sin(d - 50)
H - cos(f - 5;) H, - cos(F - 85)
N ' 7
B =6 “r{o J:L - JE I
H, - cos(¢ - 51) H, - cos(g - 52)
- J, . J N
¢ = Yo 1 . da
H - coe(g - 8y) H, - cos(d - 85)
and
- 5 -
51=+,anl r sin § _ 52.=ta.n"l r gin &
eX - v cos & ek + r cos B
H = 1 m + ,3:_ d = g"‘ bl
{3) &
) e ] -'[ S - -
m1=e‘70\/r2+ezK-2raK cos & me=~s\\"r0\//r?-!*<35<‘-+Ex‘eK cog &

The constant I' which is the circulation about each profile
(positive clock:wise), is determined by the trailing-edge condition as

T A B . »
V—_O-—= -2(6- cos Ag + o gin )“0) (a2)
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where A, B, and C are evaluated at the angle ¢ vhich -
corresponds to the trailing edge of the profile. The angle of

zero 1ift mn with respect to the sirfoil chord, is obtained

from equation (A2) by setting I' = 0; thus,

-l )
N = -ten £ - B

The stretching factor from the circle to the lattice is

- /T

where
2]

D= licosh 2K - cosh 2V cos 26)2 + (sinh 2 ein 26)

E = [h cosep cosheK(cosh%p - 00526)

-

+ L sin2t3 s:lnheK(coshQ\y - sinee) - 8in 2B sin 26 sinh |

end ¥ eand € are obtained from VY, ¢, r, end & as

e=tan-leosin¢+rsin5

)
"0

cos § + r cos &

oV

-2‘}! -
r cos(6 - B) + \/e 0. 4° sin2(6 - 8)
The velocity at any point on the surface of a profile is

d

(6), (518

dz
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TABLE T

STRENGTHS OF SOURCES AND VORTICES CHOSEN TO REPRESENT

THE NACA 4412 ATRFOIL LATTICE

- A -
070 Sonrce c¥,
Vortex location | First approxi- | Second approxi- | location | First approxi~ | Second approxi-
(fig. 6) * mation mation (t1g. 6) mation mation
:) 0.379 0.290 o 0.097 0.101
5 184 .098 Y Olh Okh
¢ .128 062 € -.043 -,041
¢ 097 Oh2 { = 0h5 =047
1 052 023 1 =053 =.057

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

2831 "ON NI, VOVN
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TABLE IT

CHART READINGS FOR NACA 4412 ATRFOIL LATTICE, SOURCE-

VORTEX METHOD

® for vortex rov of wnit

¥ for vortex row of unit

strength gtrength
b fry ||, [ o it | B\ 1
N . 5 "71 . —az‘j —t-'tﬁ d‘rl--j " 5 . 1 & -!.n':‘b -'-Er: "dfs!
Reading &
(fig. 6)~
8 0.002|0.008 |0.008 10.011.|0 010|000k 0.001 || -0.211|~0.18% |-0.1T6| ~0.120 |0 .0T0 |~0 025 ;=0 4003
b 002| .008| .008{ .011{ 030| .003[0 -.182} -.158] -.15%0} - -O47| -.013} 0
c .00k| .008{ .008} .009| <003 --OOH ~002 | =115 -.092| -.083} -.0kk -.011] 0 ~ 010
a .005| .006| .006] .00% |~.002|=400T] -« ~085] -.030| -.026{ -+ 0 ~0191 -
e o2l .oc2| .oce |-.004|-.002 -.013| ~013 |} - -.001| O. - -.025{ -, - 125
f 0 - .001|~.002 |- .008 |- .015} - .013 -.Oﬁ o] =001} - =019 057 ~.115] =174
g8 1o 0 0 - .003 |- 005 | - .002| 0 ) -.003] -.002| -.024| -.063} -.120} -.183
h -.002|0 oot | .ocel| .008| 010 .016) o 01| 0 -.02| -.on4] -.090]| -.156
1 - 012} - .007| -« .oc1| .008| 015 .023| -.01k| -.006] -« 01| «.013| ~-. - 2098
J - 020} - .015| - .01k |-~ .006 {0 010 L0161 - -.042} -,037] -.010] .001| -.020] -
k- ~ 016} -.011}-.010}- .005| .002}0 008 -.a2s5] -.102] -.0%| -W050] ~.018] O - 006
1 -oosfo |0 | .03} .o0u| om0 -a8s| -.a61] -.am3]| -.097] -.0u8{ -.015] 0

NATIGNAT ADVISORY

CUMMITIEE FOR AFRONAUTICS

43
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TABLE IIT

2 CONTRIBUTIONS OF INDIVIDUAL SOURCE AND VORTEX ROWS TO THE
DISTURBANCE FLOW FUINCTICN ON THE NACA 4412 ATRFOIL IN
Sod % j,~ CASCADE; FIRST APFROXIMATTAN, SOURCE-VORTEX METEOD

g

ot ?
S . \____l_,l_t
bnd, G| e 8 € t 1 o 7 e | ¢ 1
A Lt .
. Reading @, due to vortex rows ®; due to source rows
&t -
(fig. 6)=
\
a 0.0030| 0.0020| 0.0013| 0.0004| O 0.0205{0.007T} -0 .0030{ -0.0011|-0.0001
d 00030 «0020 00013 .0003 0 -0176 00066 =-.0020] ~ .0006 0
T c «0030| .0016| .0006| -.0001} =-.0001 0112| .0036| -.0005| O = .0005
d .0023] .0007| =-.0002 | -. - 0004 0084 .0011} O -.0008] -.0030
[} .0008 - 00007 =-.0015 | -, 0013} - ©O00T om [0} =-.0011] - 00018 - o
r -.0004| - l0015 -.0019 ] - -0013 = o 0 0001} - -002’4 - 00052 "
g o] -.0006] -. {1 =-.0002]| 0 0 «0001| ~.0027] =« -
h 0 0005| .0006| .0010| .0008 | O o -.0019| =-.0040| ~.0083
1 ~.0026| .0002| .0010| .001k| .0012 001k[ 0002} =.0006] ~.0022] =-.0052
3 -.0057| -.0011{ O 0010| 0008 «0056] .0016] O -.0004| -.0022
X -.0042} -.,0009] .0003]0 0002 01211 o041} -.0008| 0° - .0003
1 0 0009 .0005| .0001L| O .0180{ .0067{ ~.0021| =.0007| O
b - ﬁd due to vortax rows Td. due to source rows

0 .0698 | ~0..0221 [~0.0090 [~0.002% |-0.0001 | 6.0002|0.000k |~0.0004|-6.0002{ @
'¢0599 -00176 ) -.0013 0 0002 0001+ ‘-00011» -.0001) &

a
b L]
c -.0348} -.0081| -.001k4 | O - 0005 +000L{ .0004| -.0002{ @ 0001
- a - -O:L'Lll- =.000T7} O - .0018 - -0029 .0005 -0003 <0001 -0003 0004
e =.0005| =.0005| =.0032 | =.0039( =« «0002| .0001; .0005{ .0006| .0007
T -.0003| -.0035 -.0073| -.0111}|.~.009L | O 0001 .0006] .0006] .0006
g -.0010| -.004% | -.0081| -.0126} -.0096 | O 0 0002| .0001] @
h 0002 | =.0021} ~. - .0087 hd -O@l = 0 = o =o - o
' i -,0023] ~. -.0017 | -.0046| =.0051 | ~.0012[~-.0003]| ~.0003{ ~.0007| =.0012
~ J - 01057 - 00018 L0001 | -.0009] =-. - .00]9 -~ 00006 0 - -OOOH- - -0008
Xk - 00386 - -OO% - -0022 [0} - .0003 - 10016 - .OOOII- =.0001] € -9
1 -.0610| -.0178| -.0061] -.0014 | O -.0005|0 - e e

. NATIONAL ADVISORY
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TAELE IV

TOTAL XFFECT OF SOURCE AND VURTEXI ROWE, AHND COERESPCRDING DERIVED POTENTIALS
ARD VELOCITIES, OR ¥ACA k412 AIR]'OILIH CASCAD®; FIRST APPROS:MA.TI(E,
SARCE-VYORTEX METHGD

Yalues at pointe on figure 6
o 4 & ¥

Veluea et points vhere ;1!&! 1e known
)

4 a- ‘2 ? 7 L
ront|¥a. [ [ ®a | % | % | & [GatoulT O & % [% 8w B el R
e, v, o, e¥y | oV | Yo c¥, Pel o¥g | cVp | cVg |cWy e ¥y & sl v, Yo Y
(a) | (a) ] (a)
4. 800 )-&155 (i@ 54
o Sourcee I Vortices ,(\%“?) .%_l‘ﬂ' +5 Li.‘,'li Upper ewrfacs
a |0.0000 |0.002h{ 0.0240(-0.103%|0.0013 .006T 0.0049  |-0.0270|0.0033|0,6056 6089
00125 |-0.0356| T +153 ~0.25h | 8 287 |.2.033
| ® [ .000L| .0014| .0216( -. «0k1k | L0066 0295 = 0540} =.0025 5355 | 5IMOY o500 | ~.obo7 b5k | -.19k | 2.002 | 1.808
c 0007 | -0015) .0138| - £0513 | 0050 DO3NT -.qelo -.0310] .3592 | .3282(| .1000| -.0456[3.500 | -. 1.953 11.693
i ) ) 2000| -.094212,733 | -.18 | 1.719 | L.5T1
d | .0016| .0009| «001T} =.0163| .03Lk{ .0017 0206 <1080} -, 1529 | 0581 1000 | -.0606[2.218 | -.140 | 1.523 [ 1.383
e | .0021}~.0003|-. ~«0146] 0040 |.003k 000k | ~a350]-.1836) - 0365 Fa1Bor|| +B000[ -.0506(2.133 | -.208 | 1.345 | 1.237
r | .0019 |- .0020}=.0167| -.0313]-.0050 |-.0057 -0065 | -.a620|-.1872| - .1126 | 2998 8000 | -.0226[2.596 | -.057 | 1.178 |1.121
i L 9000 [ -.0078[3.226 | =025} L.078 | 1.0%3
g 20003 |- 40030 - 01TT| -.034T] 0037 |- <001k 001k | -.1891] - 208L |~ .0459 2543
Lower surfade
1 |-.0016]-.0032(-.0142| -.08k3| OOWE| 0029 H0um | -.216]1-.2290] L1642 [
+0125 [-0.045118 263. [-0.372 | 0453 | 0.0B6
4 |=0037 |-.0018|~p06h | -.0139|-.0098 | 0002 -0053 | ~.24311~.0566 AhB802 | 2236| omng| 0651 5.603 | ~.300 | - 3Lk | ~o61L
-.0037| 0007} 0046| -.0205|-.0356 |- .0030 -0236 | -.2701]-2804| B8 . +1000 [ --0847)3.30k | -.280 1 -5k | -.021
. 05)" 0% 35| ONB2 2000 | ~.1027|2.413 | = =576 | - .4
k |-.0023| .0022] .015L| ~.0503)-.050% |-.00h6 =0338 | ~2971(-.3136|1.1358 | «B422|| ,u000| ~.1157|1.92% | -.221{ -75h | -.97%
1 |--0007| .0022| .0219| -.0863|-.0372 | 0015 -w0218 | -.3203)-.3208(1.3726 fL.onge|| <6000 | -.2008{1.903 | -.192 | -.796 | --
. ) 4l 8000] ~.0621.12.335 [ ~.105 | =.B3k | -.979
a 0000 .001hk| 02h0] ~.1034] .0013| .OOGT L0 | ~.3%11) -.3208 1M51 L2283} .9000| -.0328/3.080 | ~.101] - 845 | -.086

%loc:ltiea along the murface ere considared positive when d.irected. from the lover smface at ths treiling edge toward

the upper swTace at the tru.ﬂing odge.

fa A2

1

[
B

4

R

4

g

]
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NACA TN No. 1252 35
TABLE V
CHART READINGS FOR INTEGRATI(N WITH RESPECT TO
®p; KACA 4412 ATRFOIL IN CASCADE;
CONTOUR-INTEGRAL METEOD
= E a b c a o t g h i 3 x 1
a .

So> b;’;g}; 0.5%00{ 0.3106 | 0.0801 [~0.2022 [~D.3280|-0.2911 {-0.106% | 0.1783] 0.k586 6.7954 | 1.0060

]
a 0 o} FO 001 |=0.00%0 }~0.0095|-0.008 | 0.00% | 0.020 | 0.029 { 0.0215 0.008 | 0.001
b 0 0 0 -.003 | -.0085} -.006 005 0812 | 02751 020 | 0065%0
c ~+000% | 0 0 ~0015| ~.006 | -.00% 006 019% | L0215 .010%5] ~.0005 | -.003
a -.0045 | ~.003 | =.0015] © ~.0015] ~.00L 0065] 05| 010 | ~.0035 -.0125 | -.009
e =010 |~ - -.0015{ 0 «0005] 00k 0055 | +.006 | =.0205{ =.023 | -.016
o' 01l | =010 | ~s00T | =002 | O o] 0025 0 =012 | =025 | =026 | ~-.018
g -.009 |~.008 |~.005 | ~.00L 0005 O 0005 =.0025 | =01k | =.026 |~ -.01%
! -.002 |=.001{0 002 002 | o 0 =+0035 | =01k | =o02k | ~.0215 | -.010
g 007 007 | 0065] .0085{ .0045] 0 0 =002 | =.010 | =.018 | -.015 | =-.002
g' 015 015 ] 012 011 0055 0 0 =.0005 | =.0065] =.0125{ ~.008 006
n 024 022 | .019 0O1h5} .0050] -.0035{ =.003 | © =.0025{ ~.006 | 0005 .015
h' 028 02T 1 .022 01k 001 | =008 | -.0065] .001 | -.0005}-.001% .0055] .0195
1 0295 | L0285 .022 «0095) =.@06 | ~.0155{ -.0115] .003 !0 «0005{ 008 0215
J . .022 020 | J0105] 0050f ~.020%] =.02T | -.008%] . ] (o] 0035 016
k «008 «0065] =.0015} «.012 | =023 | -.025 | ~.004 | -.0005| .008 | .0035/0 00k
1 001 |0 =.003 | =.0085! =.015 | ~.017 | -.00L | -.015 021 | 0155 .00% jO

¥
a 0 0,002 F0.02% [-0.083 |-0.15% }-0.205 |-0.217 |-0.186 [-0.130 0.066 |0.018 [-0.002
b -.002 |0 «012 | =063 | =132 | =178 | =187 ]| 24159 | =o102 | =005 | =40075 | O
c -.023 | =012 {0 0205 =40T3 | =ol11l | =120 | =095 | = -.008% .00L } -.0125
a -.081 | -.060 | -.0205{ O =018 | -.042 | =088 | -.030 | =-.00k | 0025 -.023 | =,
e ~153 | =128 { -.070 | -.0175] © =006 | -.0075] © O02 | =e023 | =077 | -4131
o' -84 | =157 1 ~.091 | =031 | =.003 | =.0005] ~.0015] .002 | -.0035 ~.040 | -.100 [ -.159
r ~20% | «.180]~.109 | ~.042 | -.007T | © 0 0015 | =011 | o053 | =219 | ~.281
! -2l | =289 -.119 | -.048 | -.0085] O 0 =001 | =017 | =.06% [~.129 | -.191
g -212 | -,186 | -.116 | ~.047 | «.008 | O 0 «.0015 | =.017% ~.063 | -.128 | -.189
gl | -.205 | -.176| -.110 | -.0k15} -.005 0015| o =001 | =.01k*] -.056 | -.120 |} ~.281
h -84 | =158 -.093 | -.030 | 0~ 0015| -.0015] © - Okl | -.103 } -.160
h! =158 | =133} =.073 | =-.017 W0035] =002 | =006 | ~.002 | ~.003 | -.0295] -« -.136
1 127 | -.101{ -.088 | -.0035} .0025| -.011 | ~.01T | ~.0085]| 0 =015 | ~.058 | ~.105
J ~062 | ~.04k | -.008 003 | -.0225] ~058 | -.063 | -.08% | -.0155 0 . -.016 | -.04T
X -.018 | -.0079 .001 | -.012 { 082 | 223 ] -.130 | -.203 | -.059 ] -.016}0 -.0085
1 -.002 | 0 =013 | =009 | =131 | =079 | -.188 | ~.16% | -.108 | ~.OBTS -.009 { O

SUprer surface at trailing edge.

e

bLover surface at trailing edge.

RATIOHAL ADVISORY
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36 NACA TN No. 1252
TABIE VI .
DERIVED POTERTIALS AND VELOCITIES OF NACA kk12 AIRFOIL IN CASCADE;
CONTOUB-INTEGRAL METHOD
Values at points om figure 6 Values where % is known
ol le (B % | %) % it Bl x| B |Ta e | T
v, oV, oY ¥y 0¥, ¥y oV, ¢ (0¥, dplds Yo Yo | Yo .
(a) | (o) | (a)
a 10,0281{-0,0687/0.0021 -0.01th ©0.0158} 0.5T17}0.5875/ Upper surface
v | .0259] -.08Tt] 0271 -.0832) .0098f .5302| .5400{b.0125(-0.0%03}{7.153 |-0.2882.287| 1.959
.0500 | -.0h96{4.541 | -.225]2.002] 1. 77T
o | .0164f -.0314} .0382{ -.0T20| -.0aTH] .3280} .30l | "ol ot ekl 1853 1. 669
a | .0033] -.0098{ .0257| -.100§ -.0718} .1119{ .ouor|| .2000| -.066712.733| -.182|1.719|1.537
L4000 | -.0650(2.218 | -.1kb]1,%23}1.379
-} -00129 -.005»9 000” "01296 '-1335 --0687 -.2022 .m -.0"'52 2.133 _'096 l.3k5 1.2&9
ot|-.0184| -.0071] .0017 | -.14ho{ -.1607|-.1237} -.2844)| 8000 | -.018912.,498 | -.047|1.17611.131 -
.9000 | -.0042]3.226 | -.01k|1.078f1.06k
£ 1-.0219] -.011k]-.0012] -,1584 -.1815| -.1465] -.328)
£1{-,0210; -.0130|-.0031} -.1728 -.1969}-.1329] -.3298 surface
P.0125 |-0.059818.263 |-0.kok)0.4%8!-0,036
g |-.0186} -.016k|-.0035| -.1872| -.2093 -.0818| -.2911 .0500 | -.0792|%.603 | -.36%]-.314] -.678
g'}-.0257| -.0151|-.0015| -.2017] ~.2189] .0060|-.2129| -1000 | ~.093813.30k | -.310~.541| -.E51 .
.2000 } -.1078|2.413 | -.260]|-. -.936
h [-.0128| -.0128}-.0043 | -.2162{ -.2332] .1268}-.1064/| L0500 _.12799 1.912 -.230 __-}‘;f -.ggh
ht |-.0096 | -.0118}-.0066 | -.2305| -.2467| .2747| .0280|| 6000 | --1073|1.903 | -.203-.796] -.999 .
L8000 | ~.056412.335 | -.132|-.834] «.966
1 [-.00TL| -.0092(-,0122 | -,2440} -.2642] .bh25| .1783}| ,9000 | -.0333{3.080 | -.103]-.845] -. k8
J | .0002| ~,0187 [-.0261] -.273T| -.2996] .7982] .4986
{k ] .0115} -.0362[-.0323 | -.3025| -.3233]1.1187] .7954
1| .0232| -.0586)-.0224 | -,3313} -.33051.3365 |1.0060
e | 0281 -.0687] .0021 |- -.3601] -.3299[1.k117}1.0818

a .
Veloclities along the surface are considered positive wvhen directed from the

trailing edge to the lesding edge on the lower swrface, 2nd from the

lezding edge to the trailing edge on the upper swxface.
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NACA TN No. 1252 ' 37

TABLE VII

COMPUTATION OF MAPPING FUNCTION CONSTANTS

FOR NACA L4412 AIRFOIL LATTICE

K o 0y s T U A%y
(deg) (deg) Yo
0.3 -7.37 | 181.62 | 1.1307 |0.0157| 0.2879 | 1.h343
0.4 -9.81 | 182.38 | .9585 | .0152| .2895 |1.2632

0.32 -7.85 181.83 | 1.0920 | .0156} .2886 | 1.3962
0.311 | -7.63 181.73 | 1.1088 | .0157| .2882 | 1.h127
0.308 | ~7.57 181.72 | 1.1147 | 0157 .2882 | 1.4186
0.309 | -7.59 181.73 | 1.1128 | .0157| .2882 | 1.4167

A
0.3083 | -7.57 181.72 | 1.114% | .0157( .2882 1.1;1836 a})
o)

cos xol Rcosh K - cos 64)(cosh K + cos 6,)
2xo °Lcosh K + cos 6;)(cosh K - cos 6y)

Tn

sin Ag tan-;{:(sm 6n - 8in 64)sinh K
no

sinh®K + sin 6 sin 6y |

U= _ L  ten-1 (ten 6 - tan 6y)tanh X
eV, tant®K + tem 6p tam 6y |

NATIGNAL ADVISORY
COMMITTEE FOR AERCRAUTICS



TABLE VIII

RELATION BETWERN CIRCLE ANGIE 6 ({-PIsNE) mD

LOCATION ON NACA hh12 ATRFOIL IN CASCADE

Upper surface Lower surface
Point QT/cVO x/c ( dzg) Point QT/cVO xfc (dzg)
g |=0.2911 |0.006 14| a [0.5875]1.000| -178.3
h | -.a06k [ 090 | 27.0l v | .5hoo) .920|-267.3
1 JAT83 1 270 | 45.T c 061 .T0T | -235.8
J L4986 | S0L | 98.6] a | .okoL| JM35| -82.9
X 954 | J7ho [ 2452 e |-.2022| 8T -35.1
1 | 1.0060 | .927 | 1682 ¢ |-.380| L033| -11.8

NATIGNAL ADVISORY

COMMITTEE FOR ARRONAUTICS
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TABLE IX

CONSTANTS OF NACA 412 ATRFOIL LATTICE

Sowrce -vortex msthod

Contour- Method ~ /
First Seoand Integral method reference 8
approximation approximation '
ALy [y 0.006 0.006 | cmeesmmeecmenee | e
ATy /c, 53 R S — S—
AT, /e, ~.32k ~ 342 -0.346 | ——eeemeeea-
c, 1.03 .99 .99 1.00
E |  cemececcmacmas | eesmceaacaaa. .3083 .3109
0y, deg SO [ — 181.73 181.79
4oy fdoy | mmmmmmmmemmee | emeeceeneea- 3.1 3.T1
N, 488 #  cememmmcmocan | cmmcmcdceaae 5.75 -5.9h

NATIONAL ADVISORY

COMMITTEE FOR AERORAUTICE
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COESTANTS OF DRRIVED ATRFOIL LATTICE

TABLE X

Source-vortex

meod; Ire | mthd | trsmefomamtion
AT, fevg 0.083 |  ecmmmecmmmmmeen | ceeeceeeeeaee-
AL fev, 301 | memmmceiecaee | s
AL /e¥g -.148 0.152 = |  esmeececcm———
ey .54 Sk 0.54
E | cceemrmemeaaa 2637 .2635
Og,d08 | eememmmmmemea 193.50 193.46
dcqyfdmy | -eeememmeee- 5.11 5.11
Ndag | ceeeemeeeeee- -2.03 ~2.11

8921 "ON NI VOVN
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S-plane
Strength
\60’ COS )\0 )
Vid sin Ao
,’1
1
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Figure | .—Flow singularities in circle plane ond corr:spondmg velocity vectors
In physical plane. '
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Fig. 4 NACA TN No, 1252
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Figure 4.- NACA <44/2 d/rfb// mn  /attice
arranyemer# /9==0 0=/032; A, = 97°
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Figure 5 .~ Valocrties on NACA 44/:" arrrfol/ 1 /so/ated flow ond
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Figure & .~ MACA 4412 airfoil, showing chosen locations of Sourcés:
and vortices along mean line, ond Jocations at which
chart readings were Fakehn.
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ngure 7 .~ The induced flow function 84 agamnst circle ,angle for NACA

442 airfb// n
o 97"
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arrangement, /3 = 0% r=/1032;
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NACA TN No. 1252 Fig. 11
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Figure |/ .—Derived oirfor/  lattice . /3 = 45°;
Jz/.OOé,' AO: 49,
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- Figure (2.~ Derived airfoil showing chosen locations of sources and vortices
along mean line and locations at which chart readings were taken,
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Figure 13 .~ Velocities on derved airforl  Jattice. f=45" O=,006; D,<#9°
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Figure 15 .- Flow singularities in $§-plane for derived airfoll lattice,

2621 ‘ON N.IL VOVN

GT 31



